
Édition 2022
KI024

D. Bienaimé, C. Gouvernet, F. Medina
L. Baty, L. Bouvier and A. Parmentier

1 Context

Pelico provides a factory operations management system to give teams the agility to
manage daily volatility and deliver products on time, at cost. The platform has been
designed to serve all teams involved in plant operations:

• Production planning

• Supply Chain

• Maintenance Repair and Operations

• Material management

• Customer Support

• Factory management

The Short Term Production Planning (STTP) allows to carry out the production planning
at the granularity of the day.

Several times a day, production leaders ask themself: who should do this operation, when,
and with which ressources? What are the priorities ? What is critical ? Theses questions
arise during the planning of the next day and week but also at any unexpected events:
a part did not arrive, a machine is no longer available, a task takes longer than initially
planned, a customer asks to bring forward an order. . .

Answering them in the best way possible is the first critical step to ensure on time
delivery for their customers. The second one is the collaboration between the teams,
which is promoted by giving a holistic view of the situation to every stakeholder.

1



2 Problem description

We consider a scheduling problem in a plant. The plant has a set M = {1, . . . ,M} of
machines, and a set O = {1, . . . , O} of operators. A set of jobs J = {1, . . . , J} must be
performed in a plant. The weight wj > 0 provides the importance of job j. Each job j in
J consists in a sequence Sj = (i1, . . . , ikj) of tasks i. Tasks are not shared between jobs:
Each job has its tasks. We denote by I = {1, . . . , I} the complete set of tasks.

I =
⊔
j∈J

Sj.

Each task i of each job has to be performed on a single machine. A single operator
performs the task on the machine. We denote by pi ∈ Z+ the processing time of task i:
It is the time needed to operate i on the machines. Preemption is not allowed: Once a
task has been started, it must be completed. We denote by rj the release date of job j.

Recall that Sj = (i1, . . . , ikj) is the sequence of tasks in j. We must decide at which time
Bi ∈ Z+ we start each task i. Let Ci ∈ Z+ be the completion time of task i. And let Bj

and Cj be the times at which job j is started and completed, respectively.

Ci = Bi + pi (1)
Bj = Bi1 (2)
Cj = Cikj

(3)

The first task i1 of j cannot be started before rj. Any task ih with h > 1 cannot be
started before ih−1 is completed.

Bi1 = Bj ≥ rj (4)
Bih ≥ Cih−1

for h > 1 (5)

We also denote by dj the due date of job j. It is the time at which job j should be
finished. We denote by Tj the tardiness of job j, and Uj the unit penalty for job j.

Tj = max(Cj − dj, 0) and Uj =

{
1 if Cj > dj

0 otherwise.
(6)

We want to finish jobs early, and therefore have a cost∑
j∈J

wj(Cj + αUj + βTj).

In practice, we typically have 1 < β < α. We denote byMi ⊆M the machines on which
task i can be performed. Performing a task on a machine requires a single operator, but
this operator must have some specific skills. We denote by Oim the set of operators that
can operate machine m to perform task i.

2



We must choose the machine mi ∈ Mi that performs task i, and the operator oi ∈ Oim

that operates m on task i. Two tasks cannot be processed on the machine at the same
time.

Bi′ /∈ {Bi, . . . , Bi + pi − 1} for all i, i′ ∈ I, i′ 6= i such that mi′ = mi or oi′ = oi (7)

In summary, a solution can be encoded by the vector (Bi,mi, oi)i∈I . The goal of this
Hackathon is to find an optimal solution of the following optimization problem.

min
∑
j∈J

wj(Cj + αUj + βTj)

subject to constraints (1)-(7)
Bi ∈ Z+, mi ∈Mi, oi ∈ Oi,mi

for all ∈ I

(8)

3



3 Instance format and solutions

Instances are given under the json format, which basically contains embedded dictionar-
ies. In these dictionaries, the keys are always strings within quotation marks. Here is an
example of a tiny.json.

Listing 1: tiny.json
1 {
2 "parameters ": {
3 "size": {
4 "nb_jobs ": 2,
5 "nb_tasks ": 3,
6 "nb_machines ": 2,
7 "nb_operators ": 2
8 },
9 "costs": {

10 "unit_penalty ": 20,
11 "tardiness ": 2
12 }
13 },
14 "jobs": [
15 {
16 "job": 1,
17 "sequence ": [1,2],
18 "release_date ": 0,
19 "due_date ": 15,
20 "weight ": 3
21 },
22 {
23 "job": 2,
24 "sequence ": [3],
25 "release_date ": 5,
26 "due_date ": 12,
27 "weight ": 2
28 }
29 ],
30 "tasks": [
31 {
32 "task": 1,
33 "processing_time ": 8,

Listing 2: tiny.json (continuation)
34 "machines ": [
35 {
36 "machine ": 1,
37 "operators ": [1,2]
38 },
39 {
40 "machine ": 2,
41 "operators ": [1]
42 }
43 ]
44 },
45 {
46 "task": 2,
47 "processing_time ": 6,
48 "machines ": [
49 {
50 "machine ": 1,
51 "operators ": [1]
52 }
53 ]
54 },
55 {
56 "task": 3,
57 "processing_time ": 5,
58 "machines ": [
59 {
60 "machine ": 1,
61 "operators ": [1]
62 }
63 ]
64 }
65 ]
66 }

4



Let us now briefly describe its syntax. We start with the dictionary attributes that
contain other containers.

• Attribute parameters contains a dictionary with the main parameters of the in-
stance.

• Attribute jobs contains an array with the jobs in J , each job being described as a
dictionary.

• Attribute tasks contains an array with the tasks in I, each task being described
as a dictionary.

• Attribute sequence within a job dictionary contains an array with the sequence of
tasks Sj of job j.

• Attribute machines within a task dictionary contains an array with the machines
inMi that can operate i

• Attribute operators within a machine m dictionary, itself in a task i dictionary
contains the operators in Oim that can operator m on i.

Table 1 describes all the other attributes in these dictionnaries.

Symbol json key Meaning
Instance parameters

J nb_jobs number of jobs
I nb_tasks number of tasks
M nb_machines number of machines
O nb_operators number of operator
α unit_penalty unit penalty cost
β tardiness tardiness cost

Job j parameters
j job job id
Sj sequence tasks sequence
rj release_date release date
dj due_date due date
wj weight job weight

Task i parameters
i task task id
pi processing_time processing time
Mi machines machines that can do i

Machine m in Mi parameters
m machine machine id
Oim operators Operators that can do i on m

Table 1: Keys in instances json

5



The solutions you should return are also json files. These solution files should contain
an array, each element of the array being a dictionary and corresponding to a task. The
dictionary of a task i has the following attributes.

• Attribute task contain the id i of task i.

• Attirbute start contains the begin time Bi of task i.

• Attribute machine contains the id of the machine mi ∈ Mi on which task i is
operated.

• Attribute operators contains the operator oi ∈ Oim which operates tasks i on
machine m.

Here are two example of feasible solutions. Their respective costs are provided in Table 2.

Listing 3: tiny-sol1.json
1 [
2 {
3 "task": 1,
4 "start": 0,
5 "machine ": 1,
6 "operator ": 2
7 },
8 {
9 "task": 2,

10 "start": 13,
11 "machine ": 1,
12 "operator ": 1
13 },
14 {
15 "task": 3,
16 "start": 8,
17 "machine ": 1,
18 "operator ": 1
19 }
20 ]

Listing 4: tiny-sol2.json
1 [
2 {
3 "task": 1,
4 "start": 0,
5 "machine ": 2,
6 "operator ": 1
7 },
8 {
9 "task": 2,

10 "start": 8,
11 "machine ": 1,
12 "operator ": 1
13 },
14 {
15 "task": 3,
16 "start": 14,
17 "machine ": 1,
18 "operator ": 1
19 }
20 ]

tiny-solution1.json
Task i Ci Job j Cj Uj Tj

1 8 1 19 1 4
2 19 2 13 1 1
3 13

Total Cost:
3(19 + 20 + 2× 4) + 2(13 + 20 + 2) = 211

tiny-solution2.json
Task i Ci Job j Cj Uj Tj

1 8 1 14 0 0
2 14 2 19 1 7
3 19

Total Cost:
3× 14 + 2(19 + 20 + 2× 7) = 148

Table 2: Solutions costs decomposition

6



4 How the ranking will be established

Four instances are provided:

• small.json

• medium.json

• large.json

• huge.json

The score of a team is the sum of the costs of the proposed solutions for each instance,
without normalization (in other words, the large instances will weigh more and this is
normal). The team with the best score, i.e. the lowest score, wins.

5 Some tips

You have to be very efficient to address such a problem in six hours. The team that is
going to win is the one that manages to quickly produce decent solutions.

1. Divide the tasks

2. Immediately start coding the tools to parse an input file and create an output file

3. Keep it simple: it’s not hard to build a feasible solution. Start by coding simple
methods that give you pretty good solutions and avoid designing a very powerful
algorithm that you will not be able to implement in 6 hours.

References

[1] “Pelico’s website”, Pelico; 2022

https://www.pelico.ai/

7

https://www.pelico.ai/

	Context
	Problem description
	Instance format and solutions
	How the ranking will be established
	Some tips

